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ABSTRACT

While vast numbers of image enhancing algorithms have already been developed, the majority of these
algorithms have not been assessed in terms of their visual performance-enhancing effects using militarily
relevant scenarios. The goal of this research was to apply a visual performance-based assessment
methodology to assess six algorithms that were specifically designed to enhance the contrast of digital
images. The image enhancing algorithms used in this study included three different histogram equalization
algorithms, the Autolevels function, the Recursive Rational Filter technique described in Marsi, Ramponi,
and Carratol and the multiscale Retinex algorithm described in Rahman, Jobson and Woodell 2. The
methodology used in the assessment has been developed to acquire objective human visual performance
data as a means of evaluating the contrast enhancement algorithms. The basic approach is to use standard
objective performance metrics, such as response time and error rate, to compare algorithm enhanced
images versus two baseline conditions, original non-enhanced images and contrast-degraded images.
Observers completed a visual search task using a spatial-forced-choice paradigm. Observers searched
images for a target (a military vehicle) hidden amongfoliage and then indicated in which quadrant of the

* screen the target was located. Response time and percent correct were measured for each observer. Results
of the study and future directions are discussed.

1. INTRODUCTION

There are several different techniques to assess the relative improvement in image quality when an image
enhancing algorithm has been applied to a digital image. The testing of enhancing effects often consists of
subjective quality assessments or measures of the ability of an automatic target detection program to find a
target before and after an image has been enhanced. It is rare to find studies that focus on the human ability
to detect a target in an enhanced image using scenarios that are relevant for the particular application for
which the enhancement is intended.

For instance, a recent study by Sale, Schultz, and Szczerba 3 used a Bayesian super-resolution enhancement
algorithm on an infrared digital video to determine the effectiveness of the enhancement for military
purposes. The results were obtained using a before/after subjective assessment. The images presented did
appear to have substantially finer detail; however, one cannot say whether this increase in detail would
result in better target detection. In another study, by Rahman, Jobson and Woodell2, a variation of the
Retinex algorithm (the MSRCR) was studied. The images before and after processing with the MSRCR
algorithm were compared and assessed in terms of image quality using subjective methods. The images
were also assessed using an automated method of determining image quality, by assigning regions of the
unprocessed and processed images to categories of excellent, good, or poor, based on global and regional
brightness and contrast measures. This automatic method did result in a numerical assessment of quality,
but it is unknown how this value would relate to human performance.



While a particular algorithm may make an image appear substantially better after enhancement, there is no
indication as to whether this improvement is significant enough to improve human visual performance.
Therefore, Neriani, Herbranson, Pinkus, Task and Task 4 developed a methodology that used a visual search
task to determine the effect, if any, that image enhancing algorithms have on improving human visual
performance. Since the aim of the research was to improve human visual performance, an improvement in
image quality was quantified as a decrease in response time when observers perform a visual search task.
Specifically, the research was designed to measure performance on the militarily relevant task of searching
for a target hidden among foliage. The methodology used gave a precise and useful estimate as to how
much (if at all) the observers' performance improved when the target images were enhanced with each of
the three Retinex algorithms that were studied.

Using the methodology developed in Neriani et al. 4, the research discussed in this paper is focused on the
assessment of six different algorithms designed to enhance the contrast of digital images. These algorithms
are described in some detail in the next section.

2. ALGORITHMS

2.1. Global Histogram Equalization (HE)

The global histogram equalization process is a contrast enhancing technique that reassigns the brightness
values of the pixels in an image based on the image's histogram. The individual pixels retain their
brightness order (they remain brighter or darker than other pixels) but the values are shifted, so that an
equal number of pixels have each possible brightness value. In many images this will spread out the values
in parts of the image where different regions meet, showing detail in areas with a high brightness gradient.

The process is the following:

For each brightness levelj in the original image (and its histogram), the new assigned value k is calculated
as:

J
k = N/T (1)

where the sum counts the number of pixels in the image (by integrating the image histogram) with a
brightness less than or equal toj, and T is the total number of pixels in the image (area under the curve in
the histogram).

2.2. Autolevels

Autolevels is a commonly used image enhancing algorithm that adjusts input images that suffer from low
dynamic range. Low dynamic range can occur when the image is too bright and in this case the image
histogram will have many values in the high end and very few in the low end. Likewise, low dynamic
range can occur when the image is too dark. In this case, the histogram will be skewed to have more values
at the low end of the range and very few in the high end.

Autolevels will automatically detect and fix this kind of imbalance. It scans through the levels of intensity
within the image and chooses a level that should be regarded as black (low intensity) and another that
should be regarded as white (high intensity). It then stretches the levels in the image so that all the
intensities present lie between the black and the white points. This results in an image with a good span of
intensities.

To help mitigate the effect of outliers - small numbers of pixels at extreme values of intensity - the tails of
the image histogram are clipped using a pre-defined parameter. The parameter used clips the tails as a
percentage of the total number of pixels in the image. In the images used in the current study, the



Autolevels algorithm was applied with a clipping percentage of 0.5, which means that the bottom and top

0.5% of pixels in the histogram will be ignored when determining the'black and white points.

2.3. Multiscale Retinex (MSR)

The MSR is based on the concept of the Retinex as developed by Edwin Land 5 as a model of the lightness
and color perception of human vision. The basic idea of the Retinex is to predict the sensory response of
lightness. The model in Land and McCann 6 describes four steps for every iteration of a Retinex
calculation. The model uses operators that sum, difference, and rectify the values in an image to obtain
spatial interactions between the pixels.

One of the important concepts behind the Retinex.model's computation of lightness for any given pixel is
the comparison of that pixel's value with the values of the other pixels in the image. The MSR uses a
center/surround design based on the receptive fields of cells found in the visual system of primates (starting
in the retina as retinal ganglion cells).

Equation 2 describes the multiscale Retinex:

K

Ri(XlX 2 )= YWk{logl(l, 2) -log[Fk(XX 2 )*Ii(Xl 1,X 2 )]} i= 1 ,...,N, (2)

where index i refers to the et spectral band, (xi, x2) is the pixel location, and * represents the convolution
operator. N is the number of spectral bands (N is three for our images, which are R, G, B), I is the input
image and R is the output image after processing. Fk is the ke (Gaussian) surround function, Wk is the
weighting associated with Fk, and K is the number of surround functions (or scales). Fk is defined as:

Fk (x ,x 2 )=iexp[-(x2 + x2))/a ], (3)

where Uk are the standard deviations of the Gaussian surrounds. Two different surround functions were
used for this research:

1. - k = 0.5, with Wk = I.q

2. (Yk = 15.0, with Wk = 1.0

The MSR output is normalized by K = I /[ZXl 1,x2 F(Xl, x2)] (4)

2.4. Partially Overlapped Sub-block Histogram Equalization (POSHE)

The POSHE algorithm is an advanced histogram equalization algorithm. It realizes the high contrast
enhancing effect associated with a local histogram equalization process, while maintaining the lower
computational complexity of a global histogram equalization process. The algorithm is described briefly in
this section. For equations and more details, see Kim, Kim and Hwang 7.

In the case of global histogram equalization, histogram equalization is performed over the entire image at
once, using the method described above. In the local histogram equalization process, also referred to as
block-overlapped histogram equalization, a sub-block of the image is defined and the histogram of the sub-
block is collected. Then, histogram equalization is performed on the center pixel of the sub-block by using
the cumulative distribution function (cdf) of that sub-block. Next, the sub-block is moved over by one
pixel and the process is repeated until the end of the input image is reached.

To achieve the effect of a local histogram equalization process while maintaining lower computational
complexity, partially-overlapped sub-block histogram equalization is performed.



First, one has to define an M x N sized output image array for an M x N sized input image and set all the
starting values in the array to zero. The next step is to assign an m x n sized sub-block. The sub-block size
is equal to the quotient of the input image size divided by a multiple of two. We divided by the value of 4
in this experiment. The sub-block origin is assigned by using the input image origin. Next, local histogram
equalization is done on the current sub-block and results are accumulated in the output image array.

Once the current sub-block has been processed, the horizontal coordinate of the sub-block origin is
increased by a horizontal step size and another local histogram equalization is performed on the current
sub-block. When the horizontal coordinate hits the edge of the image (equals the horizontal input image
size), the vertical coordinate of the sub-block origin is increased by a vertical step size, and then the
horizontal POSHE is done. This process is repeated for the entire image. The last step is to divide each
pixel value in the output image array by its sub-block histogram equalization frequency. We used a
horizontal step size of 8 and a vertical step size of 8.

One of the issues that exists with POSHE are the blocking effects that occur at the boundaries of the sub-
blocks. As suggested in Kim et al.7, if there is a blocking effect at the sub-block boundaries, apply a
blocking effect reduction filter (BERF). The BERF suggested in Kim et al.7 was applied to the test images
used in the current study.

2.5. Block-based Binomial Filtering Histogram Equalization (BBFHE)

The Block-based binomial filtering histogram equalization (BBFHE) as described in Lamberti,
Montrucchio, and Sannag, has the same theoretical basis as the POSHE algorithm, and as such, has a
similar implementation. The authors state that the BBFHE is improved with respect to the POSHE
algorithm in terms of computational complexity and similar to the POSHE with respect to visual quality.
The difference in the implementation of BBFHE is in the filter that is used. POSHE uses a low pass filter
over the histograms of the sub-blocks. BBFHE uses a binomial filter, which the authors state is improved
in terms of speed and easily able to be implemented in hardware.

A binomial filter with p= 4, corresponding to a 5 x 5 filter mask, is used in this research, where p is the
order of the filter. The steps of the BBFHE algorithm are as follows: first, the input image is divided into
sub-blocks and histograms are calculated for each sub-block. Then, the decomposed two-dimensional
binomial filter is applied to each sub-block histogram and its neighbors. Finally, the histograms that result
are used to perform the histogram equalization on each sub-block. To correct for blocking effects at the
sub-block boundaries, the binomial histogram equalization was performed 15 times on partially shifted
input images (shifted by 4 pixels horizontally and 3 pixels vertically) and the results were averaged to get
the final image. For more details, see the original source, Lamberti et al.8.

2.6. Recursive Rational Filter (RRF)

The recursive rational filter approach to contrast enhancement is summarized in detail in Marsi et al.l. The
new method discussed is based heavily on the Retinex approach, described in some detail above. The
difference between the RRF method and a standard Retinex method lies in the corrected estimation of the
illumination component. The algorithm is mainly based on rational filters, working in a recursive manner,
and is low in computational intensity, making it suitable for a real-time application.

The goal for the estimation of illumination is to create an edge preserving low-pass filter with a quite
narrow band. However, this implies a wide impulse response of the filter, causing the algorithm to become
highly computationally complex. Therefore, the RRF method uses the spatial recursivity of the operator to
get narrow bands with only a few input taps.

To calculate the illumination estimate, L(xy), the following equations are used:

S
a=a (5)

S+I.



where

s = H(6)log )2_(
I + xA + 1) +

where a is the maximum value that the a coefficient can assume and consequently is correlated to the
minimal bandwidth of the filter, S is an appropriate sensor (that can detect edges): when x(n-J) and x(n+l)
have similar values, S will become large and when x(n-1) and x(n+l) both have very different values, S
decreases (detects sharp edge). H is a parameter used to set the intensity of the sensor response and 8 is a
small value used in order to avoid the denominator becoming zero. In this experiment, a = 0.75, a = 0.3, H
-0.01 and 8 = 0.00001.

This algorithm can be extended in two directions, horizontal and vertical. So and S, are used respectively to
estimate the horizontal and vertical transitions in the signal, where m and n are the spatial coordinates of the
signal.

SH 2 (7)
lo I1+ X(n,m -10)'+ c

lg + +nM +1

H
Sv = 2 (8)

log +8I + A~n + l,

The original input image is divided, pixel by pixel, by this illumination estimate (calculated in the
equations above), called L(x,y) to get an estimate of the reflectance. The log is taken of these values and
then they are processed through a sigmoid-like function described using equation 9:

R =2 1 (9)(I + exp (- cR') 29

where

if IR'I<d, then c=h +2-1 IR'I, else c=h2 . (10)

K defines the level of emphasis, c controls the gradient of the sigmoid, and h,, h2, and d are responsible,
respectively, for controlling the slope of the 'sigmoid in the origin, its curvature, and the amplitude of the
"central dead zone". In this experiment, we used the values ofK = 1, h, = 0.3, h2 = 2.0, and d = 0.4

Next, an exponential function carries out the inverse of the exponential function used above. Before the
illumination estimate and reflectance estimate are combined, the estimated illumination, E(x,y), is
processed through a non-linear function similar to a gamma correction, using the following equation:



a255+a

where a = 0.3. Finally, a histogram stretch is applied to these values and the resulting illumination
estimate, 4fx,y), and the reflectance estimate, ,'(x,y), are multiplied together to get the values for the final
image.

3. METHODS

The goal of this research was to use a methodology that incorporates a measure of human visual
performance in the assessment of the effectiveness of several contrast enhancing algorithms. A standard
psychophysical task (spatial-forced-choice visual search task) was employed to measure human visual
performance.

3.1. Observers

Seven observers including five males and two females participated, in the experiment. The observers
ranged in age from 21 to 50 years. All had normal color vision and normal or corrected to normal visual
acuity. All of the observers completed at least three practice sessions on the task before the data reported
were collected.

3.2. Stimuli

In the experiment, each observer viewed a total of 1696 grayscale images. Of these, 1536 images consisted
of a target located in a scene of trees and grass. The target was a model of a Renault R39 reconnaissance
tank (see Figure 1), placed on an artificial terrain board. For the rest of the 1696 test images, the observers
viewed 160 images of an artificial terrain board scene of trees and grass with no target as catch trials.
These catch trials were used to help reduce guessing by the observer since they were told there were some
trials with no target.

The images were taken with the artificial terrain board rotated at 16 different angles (spanning from 0' -
337.50) and at each rotation angle, the camera was positioned on the tripod at three different tilts (tilted to
the left, in the center, and tilted to the right). If a target was present, the target was placed so that it clearly
fell into one of the four quadrants of the screen (see Figure 4). Additionally, to control for the effect of
density of foliage, the targets were always placed in an area of medium masking, which was defined as the
target being located along a tree line or directly adjacent to a clump of bushes.

All 1696 images were presented using one of eight different algorithm conditions. These conditions were a
non-degraded condition with no algorithm, a contrast-degraded condition with no algorithm, and six
conditions corresponding to contrast-degraded images processed by each of the six contrast-enhancing
algorithms described above. The images for the non-degraded condition with no algorithm were taken with
the digital camera set to have an exposure of I second, with the camera one meter away from the terrain
board, illuminated with flood lights (see Figure 2). The images for the contrast-degraded condition were
taken at the same time as the non-degraded condition with no algorithm images and were the same except
captured with an exposure of 125 milliseconds. The 1536 images with a target present included one trial
for each combination of 16 rotation angles x 3 camera tilts x 4 quadrants x 8 algorithm conditions.

Figure 5 shows the eight different algorithm conditions applied to one scene (be aware of differences
between images displayed on the CRT and images displayed on paper). The arrow in the top-left image
highlights the target which is the placed in the same location for each image in Figure 5.

The images were taken using a Nikon COOLPIX E8800 8.0 megapixel digital camera with a resolution of
1280 x 960 pixels. Before the images were used in the experiment, both the enhanced and non-enhanced



images were resized to a resolution of 1155 x 866 pixels. This was necessary due to the constraints of the
program running the experiment.

Figure 1. Target used in the experiment. Figure 2. Terrain board used for scenery in the
experiments. The image also shows the camera
angle and equipment setup used to capture the
images.

3.3. Procedure

The observers viewed the images on a 21-inch ViewSonic G220fb color monitor driven by a Diamond
Savage4 video card in a 700 MHz Pentium III Micron Computer placed on a desktop. The observers were
seated in a comfortable chair in a dimly lit room during the experimental sessions and viewed the images
from a distance of about 36 inches. Prior to the collection of data, the observers were instructed to perform
a visual search on each image shown to locate a target and that once they located the target, they would be
required to indicate which quadrant the target was located in. Additionally, the observers were told that
some of the images shown would not have a target. Before each trial started, the observers fixated on a
blank green screen with a black fixation cross in the center of it (see Figure 3). Observers pressed the
spacebar on the keyboard to initiate a trial whenever they were ready. Once the spacebar was pressed, the
image was displayed. The observer pressed the spacebar again as soon as they determined whether the
target was present or absent and the displayed image was replaced with an image indicating the assignment
of the four quadrants (see Figure 4). Then, the observer pressed the number on the keyboard that
corresponded to the quadrant the target was located in (1-4) or zero if there was no target in the image.
Each trial had a time limit of 20 seconds. If the observer did not press the spacebar in 20 seconds or less
once the test image was displayed, the test image was automatically removed and the quadrant screen was
displayed. Observers were then forced to choose which quadrant the target was in or respond zero if they
did not find the target. Percent correct and response time (measured from the first display of the image
until the spacebar was pressed to indicate target presence or absence) were recorded for each trial.

Each observer had four 15-20 minute sessions on each of eight days. During each session, the observer
viewed 48 images with a target present and five images with no target. The presentation order across all
sessions for each observer was randomized with the constraint that each of the eight algorithm conditions
was used for six trials within each session.

Figure 3. Fixation image to ready the observer for the Figure 4. Image used to indicate quadrant
start of a new trial. assignment.
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Multiscale Retinex Partiallyvelapped Sub-block Histogram Equalization

Recursive Rational Filter Global Histogram Equalization
4 , * ~ 44P

4* ~ f''

b~4& .4.. ~4
Block-based Binomial Filtering Histogram Equalization Autolevels

Figure 5. The eight different algorithm conditions. The arrow in the top left image highlights the target.



4. RESULTS

The dependent measures of response time and percent error were measured for each trial. Including all
seven observers, there were 11,872 trials. Of these, there were 1120 catch trials. There were 163 catch
trials (15%) in which an observer thought they saw a target. These trials were not used for any further
analyses.

Across all observers there were 10,752 trials in which a target was present. Of these, there were 885 timed-
out trials (8%) in which the observer failed to press the spacebar in 20 seconds or less, 99 trials (1%) where
the observer decided there was no target (before 20 seconds), and 112 trials (1%) where the observer
pushed the button for the wrong quadrant. These three categories of error added up to a total error of 10%.

Both incorrect responses and timed-out responses were combined into percent error. For the 211 incorrect
trials in which observers said there was no target or identified the wrong quadrant as containing the target,
there is no meaningful response time for finding a target. However, for the 885 timed-out trials, one can
state that the response time for finding a target was greater than 20 seconds. For response time, a
comparable measure of central tendency for each algorithm condition was determined within each observer
using the following steps. The first step was to identify which of the 192 combinations of 16 rotation
angles x 3 camera tilts x 4 quadrants contained a response time for each algorithm condition. That is, the
combinations in which none of the 8 algorithm conditions had an incorrect trial. Then, for those
combinations having a response time for each algorithm condition, the median response time across these
combinations was determined for each algorithm condition.

The same procedure that was used to determine a comparable median response time for each observer and
algorithm condition was used to determine a comparable median response time for each observer and
rotation angle, each observer and camera tilt, and each observer and quadrant.

Both the median response time and percent error determined for each observer and algorithm condition
were positively skewed, therefore, a log transformation was used for the analyses. Repeated measures
analyses of variance were performed with the log of median response time and percent error as the
dependent variables. The factor was algorithm condition. F-tests showed a significant difference among
the algorithm conditions for the log of median reaction time {F(7,42) = 48.0, p = 0.0001} and for the log of
percent error {F(7,42) = 70.3, p = 0.0001}. Post hoc paired comparisons used the Least Significant
Difference (LSD) procedure with a 0.01 per comparison error level.

The F-test showed a significant difference among the rotation angles for log of median response time
{F(15,90) = 9.5, p = 0.0001) and for the log of percent error {F(15,90) = 6.8, p = 0.0001}. The F-test did
not show a significant difference among the camera tilts for the log of median response time {F(2,12) = 2.6,
p = 0. 1157} or for the log of percent error {F(2,12) = 0.8, p = 0.4664}. The F-test showed a significant
difference among the quadrants for the log of median response time {F(3,18) = 11.8, p = 0.0002} and for
the log of percent error {F(3,18) = 23.2, p = 0.0001).

Figure 6 contains the results of the paired comparisons with algorithm conditions sorted by increasing
response time. The whiskers represent the least significant difference value. This value is the mean
difference between a pair of algorithm conditions that would have a p-value of 0.01. The upper panel
shows the mean response time for each algorithm condition. The lower panel shows the percent error for
each algorithm condition. No whiskers are shown for percent error of the Original and RRF algorithm
conditions because the whiskers cut through the means. The Original and the RRF algorithm conditions
were notsignificantly different from each other. Figure 7 contains results of the paired comparisons with
rotation angles sorted by increasing response time. The lower panel of Figure 7 contains results of the
paired comparisons of percent error. The whiskers represent the least significant difference value (as
described above). Figure 8 contains results of the paired comparisons with camera tilts sorted by increasing
response time. Figure 9 contains the results of the paired comparisons with quadrant sorted by increasing
response time. The whiskers represent the least significant difference value (as described above).
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5. DISSCUSSION / CONCLUSIONS

Figure 6 summarizes the results of the paired comparisons, sorted by increasing response time. As you can
see, the RRF algorithm performed very well, with the mean response time for the RRF being not
significantly different from that for the Original condition. The response time in all the other algorithm
conditions was significantly different from the response time in the in Original condition. The response
time for the RRF algorithm was not significantly different from the multiscale Retinex algorithm and was
significantly different from all the other algorithm conditions. In terms of percent error, the Original and
RRF conditions were not significantly different from each other. Both were significantly different from the
other algorithm conditions in percent error. Of additional significance is the fact that one algorithm,
POSHE, did worse than the Degraded condition, resulting in both longer response times and a higher
percent error. While this may seem surprising, the POSHE algorithm creates large blocking effects that
were still obvious in the image even after the blocking effect reduction filter was applied. The blocking
effects could be seen as extra noise in the image which could result in slower search times and larger
percent error, as the observers might interpret the noise of the blocking effects to be the signal from the
target.

Figure 7 summarizes the results of the paired comparisons with rotation angles sorted by increasing
response time. As can be seen, there were significant differences in both response time and percent error
among the different rotation angles. This may have occurred due to the differences in terrain density in
different areas of the terrain board. While the terrain was fairly similar in content in the various areas of
the terrain board, there were a few scenes (angles) in which the foliage was fairly sparse. This might result
in a faster and more accurate search, as there would be fewer distracting elements that the observers would
have to search through to find the target. Additionally, there were several scenes in which there was more
dense foliage than in others and this would tend to slow search times and make them less accurate, as there
would be more distracting elements to confuse the target with.

Figure 8 summarizes the results of the paired comparisons with camera tilt. The figure shows that there
was no significant difference among the camera tilts for either response time or percent error. This is not
surprising, as the scene would not change drastically as the camera was tilted. The density of the foliage in
the scene appears to be a critical element in terms of response time and percent error and, for the most part,
the overall density of the foliage in the scene would remain the same as the tilt was changed.



Figure 9 summarizes the results of the paired comparisons with quadrant sorted by increasing response time
in the upper panel and increasing percent error in the lower panel. As the figure shows, there was a
significant difference among the quadrants in terms of both response time and percent error. The fastest
response times were in the upper right quadrant, followed by the upper left, lower left and lower right
quadrant. This may have occurred due to a particular search strategy utilized by the observers; observers
revealed that the first location they started to look in was the upper right quadrant and then followed a
counterclockwise pattern, ending in the lower right quadrant. If they did not find the target in the initial
pass through each quadrant, they would repeat the pattern, spending more time in each quadrant. This
strategy was utilized by the majority of the observers, regardless of the fact that they were not prompted to
adopt any particular search strategy.

The objective of this work was to use the assessment methodology developed in Neriani et al.4 to assess the
degree of contrast enhancement provided by six different algorithms. Based on the results discussed above,
it would appear that both the RRF algorithm and (perhaps) the multiscale Retinex algorithm are promising
algorithms in terms of contrast enhancement. The RRF algorithm condition had both a mean log response
time and a mean log percent error that were not significantly different from the Original condition and the
multiscale Retinex algorithm condition had a mean log response time that was not significantly different
from the RRF algorithm condition. The other four algorithms (Autolevels, Global Histogram Equalization,
BBFHE, and POSHE) did not perform to the same level as the RRF and multiscale Retinex algorithms. In
conclusion, we will further investigate the enhancing effects of both the RRF and multiscale Retinex
algorithm by testing them using different stimuli (different target, different terrain, and different lighting),
as we believe these two algorithms to provide the greatest benefit to our research program.
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